ORIE 5355

Lecture 9: Algorithmic pricing: capacity, price differentiation, and competition

Nikhil Garg

Announcements

- HW2 due tomorrow
- Quiz 2 released tomorrow - due Sunday evening
- HW 3 released - due Tuesday 10/17
- Conceptual component of HW due by class time on 10/04

Last time

- Given a demand distribution $\mathrm{d}(\mathrm{p})=1$ $F(p)$, how to calculate optimal prices

$$
\arg \max _{\mathrm{p}}[\mathrm{p} \times \mathrm{d}(\mathrm{p})]
$$

- How to estimate demand distributions, potentially as a function of covariates

More on demand estimation

- We want to estimate $\mathrm{d}(\mathrm{p}, \mathrm{x}) \stackrel{\text { def }}{=} 1-F_{p \mid X}(p \mid X=x)$
- Last time: Logistic regression
- Target (Y variable) is purchase decision $\mathrm{d}(\mathrm{p}, \mathrm{x})$
- Covariates (p, x) are: price offered, user covariates, interactions between price and covariates or between covariates
- Challenge: what if you have many items you're selling (separately)? This wastes information (can't use models across items)
- Alternative: Use idea from recommendations! Suppose you have user vector u_{i} and item vector w_{j}. Then, ML model to learn with covariates: ($\mathrm{p}, u_{i} \cdot w_{j}$)
- Can learn demand for items you haven't sold before at certain prices!
- (Or completely new items, using KNN approach from recommendations)
- Allows incorporating other information you have about items, that helped you learn the item vectors

Plan for today

Many assumptions last time:

- No capacity constraints
- No competition from other sellers
- Only one item
- Allowed to explicitly give different prices to different users
- No over-time dynamics

We'll peel back some of these assumptions today

Capacity constraints and pricing over time

Setting and examples

You often are trying to sell limited quantities of a good, to many potential customers over time

- Airline tickets - the airline "wastes" a seat that's unsold
- Same for concerts, sports, any event with a fixed date
- Clothes that are going out of season/fashion
- Electronics that become obsolete over time
- Any retail setting with inventory constraints
- Often 2 competing effects:
- The items become less valuable over time, or you have a deadline to sell them
- You have less stock over time

Simplified example

- You have 1 copy of the item to sell
- There are 2 time periods, today and tomorrow
- One customer will come in today, a different one tomorrow
- No covariates
- No "discounting" (a dollar tomorrow is as valuable as a dollar today)
- You already have a good estimate of $d(p)$

What price p_{1} do you set today? What price p_{2} do you set tomorrow?

A couple of observations

What I do today depends on what I can/will do tomorrow.

- I can't set p_{1} unless I know how I will set p_{2} in each scenario. (whether I sold the item today, or whether I didn't).
- I have to "simulate" the future

If I don't sell the item today, then tomorrow I am solving the same problem that we solved in class last time:

- Maximizing revenue for a single buyer/without capacity considerations
- => The price for tomorrow will be same as simple revenue maximizing price

$$
\mathrm{p}_{2}=\arg \max _{\mathrm{p}}[\mathrm{p} \times \mathrm{d}(\mathrm{p})]
$$

Not true for the price today:

- If I sell the item today, then I lose out on a potential sale tomorrow
- If I don't sell the item today, I get another chance tomorrow
=> I should "take a risk" today to try to sell at a higher price

Solving the example: "Bellman equation"

- If I don't sell today: (happens with probability $1-\mathrm{d}\left(\mathrm{p}_{1}\right)$)
- Then my revenue today is 0
- Then the expected revenue tomorrow is: $\mathrm{p}_{2} \mathrm{~d}\left(\mathrm{p}_{2}\right)$
- If I do sell today: (happens with probability $\mathrm{d}\left(\mathrm{p}_{1}\right)$)
- My revenue today is p_{1}
- Then the expected revenue tomorrow is 0

- So, my overall expected revenue is:

$$
\mathrm{d}\left(\mathrm{p}_{1}\right)\left(\mathrm{p}_{1}+0\right)+\left(1-\mathrm{d}\left(\mathrm{p}_{1}\right)\right)\left(0+\mathrm{p}_{2} \mathrm{~d}\left(\mathrm{p}_{2}\right)\right)
$$

- p_{2} easy to solve - does not depend on p_{1}
- Given p_{2}, the above revenue function is only a function of $\mathrm{p}_{1}=>$ Can optimize p_{1}

Bellman equation generally

- You can generalize this idea to selling any number of items sequentially for T days
- Start from Day T: If you still have an item, do single-shot maximization
- Day T - 1: Given Day T price, you know expected reward if you still have an item to be sold after Day T-1. And so, you can calculate optimal price for Day $\mathrm{T}-1$.
- Now, you have the expected reward if you still have an item to be sold after Day T-2...

More Bellman equation

- Let V_{t} denote: "Expected profit if I still have an item to sell on day $\mathrm{t}^{\prime \prime}$

$$
\begin{gathered}
\mathrm{V}_{\mathrm{T}}=p_{T} \times d\left(p_{T}\right) \\
\mathrm{V}_{\mathrm{T}-1}=\left[p_{T-1} \times d\left(p_{T-1}\right)\right]+\left(1-d\left(p_{T-1}\right)\right) V_{T}
\end{gathered}
$$

- Above means: "Value today is revenue today if I sell the item today, or tomorrow's expected revenue if I don't
 sell the item today"
- For each t , given V_{t+1} we can calculate optimal price p_{t}
- Keep iterating until you have prices $p_{0} \ldots p_{T}$
- Resulting V_{0} is my expected revenue given these prices

Bellman equations: a general idea

- Constructing a tree to reason about what happens tomorrow, and then iterating backwards, is a powerful + flexible algorithmic technique: "dynamic programming"
- Example: What if you have 5 copies of each item?

Let k denote how many copies of the item I have. Then:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{t}, 0}=0 \text { for all } \mathrm{t} \\
\mathrm{~V}_{\mathrm{t}, \mathrm{k}}=\max _{p_{t, k}} d\left(p_{t, k}\right)\left[p_{t, k}+\mathrm{V}_{\mathrm{t}+1, \mathrm{k}-1}\right]+\left(1-d\left(p_{t, k}\right)\right) \mathrm{V}_{\mathrm{t}+1, \mathrm{k}}
\end{gathered}
$$

If I sell an item today: Revenue today, plus future revenue from 1 less item
If I don't sell: Future revenue from same number of items
Competing effects: Now, less capacity over time \rightarrow prices should go up (but less time to sell, so prices should go down).

Capacity constraints + over-time pricing in practice

- Dynamic programs/bellman equations are powerful, but often the real world is too complicated
- Uncertainty in future capacity
- Future actions of competitors
- Future demand distributions
- "Long time horizons" (T is big)
- In theory, dynamic programming can handle the above. In practice, hard to know how to calculate future value.

Approximating dynamic programming

- In the recommendations module, we created "score"(or "index") functions:
- Consider future users, through capacity and avg ratings terms in the score function
- With 1 item: $\mathrm{V}_{\mathrm{t}+1}$ represents my "opportunity cost" if I sell an item today that I could have sold tomorrow.

Also interpret as "safety net": if fail to sell the item today, still earn V_{t+1} in expectation

- Instead of doing a full Bellman equation, estimate $\mathrm{V}_{\mathrm{t}+1}$ through some other means, then plug into the decision problem for today (finding price p_{t})
- Can construct it like we did score functions for recommendations
- AlphaGo to play $G o: V_{t+1}$ is partially estimated via a neural network

Pricing with capacity summary

- Just like in recommendations, have to think about potential future demand
- Here, potential future demand lets us be "more aggressive" by pricing higher today
- If I can summarize future revenue $\left(\mathrm{V}_{\mathrm{t}+1}\right)$ effectively, then I can optimize today's prices
- Dynamic programming: start from the end!
- We assumed that customers can't strategize on when to come - not true!

Questions?

